Adjunct Associate Professor
Mathematics and Science Department
BAC 308
+359 73 888 482
Journal Articles
Dereli, T., Nounahon, P., & Popov, T. (2024). Landau Levels versus Hydrogen Atom. Universe 10(4). https://doi.org/10.3390/universe10040172
Dereli, T., Nounahon, P., & Popov, T. (2022). A remarkable dynamical symmetry of the Landau problem. Journal of Physics: Conference Series, 2191(1). https://doi.org/10.1088/1742-6596/2191/1/012009
Kirchbach, M., Popov, T., & Vallejo, J.A. (2021). Color confinement at the boundary of the conformally compactified AdS5. Journal of High Energy Physics, 2021(9). https://doi.org/10.1007/JHEP09(2021)171
Dereli, T., & Popov, T. (2021). Bloch waves and non-commutative tori of magnetic translations. Journal of Mathematical Physics, 62(10). https://arxiv.org/pdf/2106.11093.pdf
Popov, T. (2020). Quantum diagonal algebra and pseudo-plactic algebra. Springer Proceedings in Mathematics and Statistics, 335, 431-445. https://arxiv.org/pdf/1912.03751.pdf
Dubois-Violette, M., & Popov, T. (2013). C∞-structure on the cohomology of the free 2-nilpotent Lie algebra. Publications de l'Institut Mathematique, 94(108), 99-109. https://hal.archives-ouvertes.fr/hal-00777930/document
Dubois-Violette, M., & Popov, T. (2012). Homotopy transfer and self-dual schur modules, Physics of Particles and Nuclei, 43(5), 708-710. https://hal.archives-ouvertes.fr/hal-00667215/document
Ogievetsky, O., & Popov, T. (2010). R-matrices in rime. Advances in Theoretical and Mathematical Physics, 14, 439-506. https://arxiv.org/pdf/0704.1947.pdf
Ogievetsky, O., & Popov, T. (2009). Cremmer-Gervais quantum Lie algebra. Fortschritte der Physik, 57, 654-658. https://arxiv.org/pdf/0905.0882.pdf
Loday, J.-L., & Popov, T. (2008). Parastatistics algebra, Young tableaux and the super plactic monoid. International Journal of Geometric Methods in Modern Physics, 5(8), 1295-1314. https://arxiv.org/pdf/0810.0844.pdf
Aneva, B., & Popov, T. (2005). Hopf structure and Green ansatz of deformed parastatistics Algebras. Journal of Physics A: Mathematical and General, 38(29), 6473-6484. https://hal.archives-ouvertes.fr/hal-00004069/document
Popov, T. (2004). Automorphismes des algebres cubiques. Comptes Rendus Mathematique [C. R. Acad. Sci. Paris], 338(8), 591-594. https://doi.org/10.1016/j.crma.2004.02.007
Dubois-Violette, M., & Popov, T. (2002). Homogeneous algebras, statistics and combinatorics. Letters in Mathematical Physics, 61(2), 159-170. https://www.researchgate.net/publication/2102971_Homogeneous_Algebras_Statistics_and_Combinatorics
Hadjiivanov, L., & Popov, T. (2002). On the rational solutions of the su(2)k Knizhnik-Zamolodchikov equation. The European Physical Journal B – Condensed Matter and Complex Systems, 29, 183-187. https://arxiv.org/pdf/hep-th/0109219.pdf
Conference Proceedings
Kirchbach, M., Popov, T., & Vallejo, J.A. (2022). The Conformal-Symmetry–Color-Neutrality Connection in Strong Interaction. In V. Dobrev (Ed.), Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics: Vol. 396 (pp 361–369). Springer, Singapore. https://doi.org/10.1007/978-981-19-4751-3_31
Popov, T. (2019). A Jordan algebra for hydrogen atom and space-time symmetries. In AIP Conference Proceedings 2075. American Institute of Physics.
Popov, T. (2018). Jordan algebra and hydrogen atom. In V. Dobrev (Ed.) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics (pp. 231-244). Singapore: Springer.
Popov, T. (2016). Quantum plactic and pseudo-plactic algebras. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 441-451). Singapore: Springer.
Popov, T. (2015). Parafermionic algebras, their modules and cohomologies. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 515-526). Tokyo: Springer. https://arxiv.org/pdf/1402.7091.pdf
T. Popov (2013). Parafermions and homotopy algebras. In 7th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics 2012, MPHYS 2012 (pp. 289-303). http://www.mphys7.ipb.ac.rs/proceedings7/29-Popov.pdf
Dubois-Violette, M., & Popov, T. (2013). Homotopy commutative algebra and 2-nilpotent Lie algebra. In A. Makhlouf, E. Paal, S. Silvestrov, & A. Stolin (Eds.) Algebra, Geometry and Mathematical Physics (pp.137-146). Heidelberg: Springer. https://hal.archives-ouvertes.fr/file/index/docid/718938/filename/CinfMulhouse.pdf
Dubois-Violette, M., & Popov, T. (2013). Young tableaux and homotopy commutative algebras. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 191-201). Tokyo: Springer. https://arxiv.org/pdf/1202.2230.pdf
Ogievetsky, O., & Popov, T. (2012). Drinfeld-jimbo quantum Lie algebra. In International Journal of Modern Physics: Conference Series, 13, 149-157. https://www.worldscientific.com/doi/pdf/10.1142/S2010194512006812
Loday, J.-L., & Popov, T. (2010). Hopf structures on standard Young tableaux. In Lie Theory and Its Applications in Physics: VIII International Workshop, 1243, 265-275. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.6029&rep=rep1&type=pdf
Ogievetsky, O., & Popov, T. (2007). On the Rime Ansatz. https://arxiv.org/pdf/0712.3953.pdf
Loday, J.-L., & Popov, T. (2007). Parastatistics algebras and super semistandard Young tableaux. In V. Dobrev & H.D. Doebner (Eds.) Lie Theory and its Applications in Physics VII (pp. 423-430). Varna: Heron Press. https://arxiv.org/pdf/0711.3648.pdf
Popov, T. (2005). Automorphisms of regular algebras. In V. Dobrev & H.D. Doebner (Eds.) Lie Theory and Its Applications in Physics (pp. 133-140). Varna: Heron Press. https://arxiv.org/pdf/math/0601264.pdf
Popov, T. (2004). Green ansatz for deformed parastatistics. In B. Dragovich, Z. Raki´c, & B. Sazdovi´c (Eds.) Proceedings of III Summer School in Modern Mathematical Physics (pp. 457-464).
Popov, T. (2003). Parastatistics algebras and combinatorics. In G Djordjević, L Nešić, & J Wess (Eds.) Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model (pp. 231-240).
Popov, T. (2003). Homogeneous algebras, parastatistics and combinatorics. In J.P Gazeau, R Kerner, J.P Antoine, S Metens, & J.Y Thibon (Eds.) GROUP 24: Physical and Mathematical Aspects of Symmetries: Proceedings of the 24th International Colloquium on Group Theoretical Methods in Physics, Paris, 15-20 July 2002 (pp. 463-467).