Skip to Main Content

AUBG Faculty Bibliography: Popov, Todor

Todor Popov

Associate Professor

Mathematics and Science Department

  Popov, Todor

  BAC 308

  +359 73 888 482

  tpopov@aubg.edu

  https://orcid.org/0000-0001-5151-6144

  35516045600  

Bibliography

Journal Articles

Gigov, L., & Popov, T. (2025). Landau levels and Newton-Hooke dualities. Bulgarian Journal of Physics, 52(1), 81-98. https://www.bjp-bg.com/papers/bjp2025_1_081-098.pdf

Dereli, T., Nounahon, P., & Popov, T. (2024). Landau Levels versus Hydrogen Atom. Universe 10(4). https://doi.org/10.3390/universe10040172

Kirchbach, M., Popov, T., & Vallejo, J.A. (2021). Color confinement at the boundary of the conformally compactified AdS5. Journal of High Energy Physics, 2021(9). https://doi.org/10.1007/JHEP09(2021)171

Dereli, T., & Popov, T. (2021). Bloch waves and non-commutative tori of magnetic translations. Journal of Mathematical Physics, 62(10). https://arxiv.org/pdf/2106.11093.pdf

Dubois-Violette, M., & Popov, T. (2013). C∞-structure on the cohomology of the free 2-nilpotent Lie algebra. Publications de l'Institut Mathematique, 94(108), 99-109.  https://hal.archives-ouvertes.fr/hal-00777930/document

Dubois-Violette, M., & Popov, T. (2012). Homotopy transfer and self-dual Schur modules, Physics of Particles and Nuclei, 43(5), 708-710. https://hal.archives-ouvertes.fr/hal-00667215/document

Ogievetsky, O., & Popov, T. (2010). R-matrices in Rime. Advances in Theoretical and Mathematical Physics, 14(2), 439-506. https://arxiv.org/pdf/0704.1947.pdf

Ogievetsky, O., & Popov, T. (2009). Cremmer-Gervais quantum Lie algebra. Fortschritte der Physik, 57, 654-658. https://arxiv.org/pdf/0905.0882.pdf

Loday, J.-L., & Popov, T. (2008). Parastatistics algebra, Young tableaux and the super plactic monoid. International Journal of Geometric Methods in Modern Physics, 5(8), 1295-1314. https://arxiv.org/pdf/0810.0844.pdf

Aneva, B., & Popov, T. (2005). Hopf structure and Green ansatz of deformed parastatistics Algebras. Journal of Physics A: Mathematical and General, 38(29), 6473-6484. https://hal.archives-ouvertes.fr/hal-00004069/document

Popov, T. (2004). Automorphismes des algebres cubiques. Comptes Rendus Mathematique [C. R. Acad. Sci. Paris], 338(8), 591-594. https://doi.org/10.1016/j.crma.2004.02.007

Dubois-Violette, M., & Popov, T. (2002). Homogeneous algebras, statistics and combinatorics. Letters in Mathematical Physics, 61(2), 159-170. https://www.researchgate.net/publication/2102971_Homogeneous_Algebras_Statistics_and_Combinatorics

Hadjiivanov, L., & Popov, T. (2002). On the rational solutions of the Knizhnik-Zamolodchikov equation. The European Physical Journal B – Condensed Matter and Complex Systems, 29(2), 183-187. https://doi.org/10.1140/epjb/e2002-00282-x

Conference Proceedings

Nounahon, P., & Popov, T. (2025). Landau levels for the Haldane’s spheres. In V. Dobrev (Ed.), Springer proceedings in mathematics & statistics: Vol. 473. Lie theory and its applications in physics (pp. 523–534). Springer. https://doi.org/10.1007/978-981-97-6453-2_44

Kirchbach, M., Popov, T., & Vallejo, J.A. (2022). The conformal-symmetry–color-neutrality connection in strong interaction. In V. Dobrev (Ed.), Springer proceedings in mathematics & statistics: Vol. 396. Lie theory and its applications in physics. (pp 361–369). Springer. https://doi.org/10.1007/978-981-19-4751-3_31

Dereli, T., Nounahon, P., & Popov, T. (2022). A remarkable dynamical symmetry of the Landau problem. Journal of Physics: Conference Series: Vol. 2191. A life in mathematical physics: Conference in honour of Tekin Dereli. IOP Publishing. https://doi.org/10.1088/1742-6596/2191/1/012009   

Popov, T. (2020). Quantum diagonal algebra and pseudo-plactic algebra. In V. Dobrev (Ed.), Springer proceedings in mathematics and statistics: Vol. 335. Lie theory and its applications in physics (pp. 431-445). Springer. https://arxiv.org/pdf/1912.03751.pdf

Popov, T. (2019). A Jordan algebra for hydrogen atom and space-time symmetries. In AIP conference proceedings: Vol. 2075. 10th jubilee international conference of the Balkan physical union. American Institute of Physics. https://doi.org/10.1063/1.5091248

Popov, T. (2018). Jordan algebra and hydrogen atom. In V. Dobrev (Ed.), Springer proceedings in mathematics & statistics: Vol. 263. Quantum theory and symmetries with Lie theory and its applications in physics (vol. 1, pp. 231-244). Springer. https://doi.org/10.1007/978-981-13-2715-5_13

Popov, T. (2016). Quantum plactic and pseudo-plactic algebras. In V. Dobrev (Ed.), Springer proceedings in mathematics & statistics: Vol. 191. Lie theory and its applications in physics (pp. 441-451). Springer. https://doi.org/10.1007/978-981-10-2636-2_32

Popov, T. (2015). Parafermionic algebras, their modules and cohomologies. In V. Dobrev (Ed.) Springer proceedings in mathematics & statistics: Vol.111. Lie theory and its applications in physics (pp. 515-526). Springer. https://arxiv.org/pdf/1402.7091.pdf

Popov, T. (2013). Parafermions and Homotopy algebras. In B. Dragovich (Ed.), 7th mathematical physics meeting: Summer school and conference on modern mathematical physics 2012 (pp. 289-303). Belgrade Institute of Physics. http://www.mphys7.ipb.ac.rs/proceedings7/29-Popov.pdf 

Dubois-Violette, M., & Popov, T. (2013). Homotopy commutative algebra and 2-nilpotent Lie algebra. In A. Makhlouf, E. Paal, S. Silvestrov, & A. Stolin (Eds.), Springer proceedings in mathematics & statistics: Vol. 85. Algebra, geometry and mathematical physics (pp. 71–81). Springer. https://doi.org/10.1007/978-3-642-55361-5_5

Dubois-Violette, M., & Popov, T. (2013). Young tableaux and homotopy commutative algebras. In V. Dobrev (Ed.), Springer proceedings in mathematics & statistics: Vol. 36. Lie Theory and Its Applications in Physics (pp. 499–509). Springer. https://arxiv.org/pdf/1202.2230.pdf

Ogievetsky, O., & Popov, T. (2012). Drinfeld-jimbo quantum Lie algebra. In M. Dimitrijević, G. Djordjević, G. Fiore, & P. Schupp (Eds.), International Journal of Modern Physics: Conference Series: Vol. 13. Proceedings of the workshop of scientific and human legacy of Julius Wess (JW2011), (pp. 149-157). World Scientific Publishing Company. https://doi.org/10.1142/S2010194512006812

Loday, J.-L., & Popov, T. (2010). Hopf structures on standard Young tableaux. In AIP conference proceedings: Vol. 1243. Lie theory and its applications in physics: VIII international workshop (pp. 265-275). American Institute of Physics. https://doi.org/10.1063/1.3460173

Ogievetsky, O., & Popov, T. (2007). On the Rime Ansatz. VII International workshop: Supersymmetries and quantum symmetries. https://arxiv.org/pdf/0712.3953.pdf

Loday, J.-L., & Popov, T. (2007). Parastatistics algebras and super semistandard Young tableaux. In V. Dobrev, & H.D. Doebner (Eds.), Lie theory and its applications in physics VII (pp. 423-430). Heron Press. https://arxiv.org/pdf/0711.3648.pdf

Popov, T. (2005). Automorphisms of regular algebras. In V. Dobrev, & H.D. Doebner (Eds.), Lie theory and its applications in physics (pp. 133-140). Heron Press. https://arxiv.org/pdf/math/0601264.pdf

Popov, T. (2004). Green ansatz for deformed parastatistics. In B. Dragovich, Z. Rakic, & B. Sazdovic (Eds.), Modern mathematical physics. Proceedings, 3rd Summer School, Zlatibor, Serbia and Montenegro (pp. 457-464). Belgrade Institute of Physics. https://inspirehep.net/literature/885598

Popov, T. (2003). Parastatistics algebras and combinatorics. In G Djordjević, L Nešić, & J. Wess (Eds.), Mathematical, theoretical and phenomenological challenges beyond the standard model (pp. 231-240). https://doi.org/10.1142/9789812702166_0021

Popov, T. (2003). Homogeneous algebras, parastatistics and combinatorics. In J.P. Gazeau, R. Kerner, J.P. Antoine, S. Metens, & J.Y. Thibon (Eds.), GROUP 24: Physical and mathematical aspects of symmetries: Proceedings of the 24th International colloquium on group theoretical methods in physics (pp. 463-467). IOP Publishing Limited.