Skip to Main Content

AUBG Faculty Bibliography: Popov, Todor

Todor Popov

Adjunct Associate Professor (MSc)

  Popov, Todor

  BAC 308

  +359 73 888 482

  tpopov@aubg.edu

  https://orcid.org/0000-0001-5151-6144

  35516045600  

Bibliography

Journal Articles

Dereli, T., Nounahon, P., & Popov, T. (2024). Landau Levels versus Hydrogen Atom. Universe 10(4). https://doi.org/10.3390/universe10040172

Dereli, T., Nounahon, P., & Popov, T. (2022). A remarkable dynamical symmetry of the Landau problem. Journal of Physics: Conference Series, 2191(1). https://doi.org/10.1088/1742-6596/2191/1/012009   

Kirchbach, M., Popov, T., & Vallejo, J.A. (2021). Color confinement at the boundary of the conformally compactified AdS5. Journal of High Energy Physics, 2021(9). https://doi.org/10.1007/JHEP09(2021)171

Dereli, T., & Popov, T. (2021). Bloch waves and non-commutative tori of magnetic translations. Journal of Mathematical Physics, 62(10). https://arxiv.org/pdf/2106.11093.pdf

Popov, T. (2020). Quantum diagonal algebra and pseudo-plactic algebra. Springer Proceedings in Mathematics and Statistics, 335, 431-445. https://arxiv.org/pdf/1912.03751.pdf 

Dubois-Violette, M., & Popov, T. (2013). C∞-structure on the cohomology of the free 2-nilpotent Lie algebra. Publications de l'Institut Mathematique, 94(108), 99-109. https://hal.archives-ouvertes.fr/hal-00777930/document

Dubois-Violette, M., & Popov, T. (2012). Homotopy transfer and self-dual schur modules, Physics of Particles and Nuclei, 43(5), 708-710. https://hal.archives-ouvertes.fr/hal-00667215/document

Ogievetsky, O., & Popov, T. (2010). R-matrices in rime. Advances in Theoretical and Mathematical Physics, 14, 439-506. https://arxiv.org/pdf/0704.1947.pdf

Ogievetsky, O., & Popov, T. (2009). Cremmer-Gervais quantum Lie algebra. Fortschritte der Physik, 57, 654-658. https://arxiv.org/pdf/0905.0882.pdf

Loday, J.-L., & Popov, T. (2008). Parastatistics algebra, Young tableaux and the super plactic monoid. International Journal of Geometric Methods in Modern Physics, 5(8), 1295-1314. https://arxiv.org/pdf/0810.0844.pdf

Aneva, B., & Popov, T. (2005). Hopf structure and Green ansatz of deformed parastatistics Algebras. Journal of Physics A: Mathematical and General, 38(29), 6473-6484. https://hal.archives-ouvertes.fr/hal-00004069/document

Popov, T. (2004). Automorphismes des algebres cubiques. Comptes Rendus Mathematique [C. R. Acad. Sci. Paris], 338(8), 591-594. https://doi.org/10.1016/j.crma.2004.02.007

Dubois-Violette, M., & Popov, T. (2002). Homogeneous algebras, statistics and combinatorics. Letters in Mathematical Physics, 61(2), 159-170. https://www.researchgate.net/publication/2102971_Homogeneous_Algebras_Statistics_and_Combinatorics

Hadjiivanov, L., & Popov, T. (2002). On the rational solutions of the su(2)k Knizhnik-Zamolodchikov equation. The European Physical Journal B – Condensed Matter and Complex Systems, 29, 183-187. https://arxiv.org/pdf/hep-th/0109219.pdf

Conference Proceedings

Kirchbach, M., Popov, T., & Vallejo, J.A. (2022). The Conformal-Symmetry–Color-Neutrality Connection in Strong Interaction. In V. Dobrev (Ed.), Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics: Vol. 396 (pp 361–369). Springer, Singapore. https://doi.org/10.1007/978-981-19-4751-3_31

Popov, T. (2019). A Jordan algebra for hydrogen atom and space-time symmetries. In AIP Conference Proceedings 2075. American Institute of Physics.

Popov, T. (2018). Jordan algebra and hydrogen atom. In V. Dobrev (Ed.) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics (pp. 231-244). Singapore: Springer.

Popov, T. (2016). Quantum plactic and pseudo-plactic algebras. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 441-451). Singapore: Springer.

Popov, T. (2015). Parafermionic algebras, their modules and cohomologies. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 515-526). Tokyo: Springer. https://arxiv.org/pdf/1402.7091.pdf

T. Popov (2013). Parafermions and homotopy algebras. In 7th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics 2012, MPHYS 2012 (pp. 289-303). http://www.mphys7.ipb.ac.rs/proceedings7/29-Popov.pdf  

Dubois-Violette, M., & Popov, T. (2013). Homotopy commutative algebra and 2-nilpotent Lie algebra. In A. Makhlouf, E. Paal, S. Silvestrov, & A. Stolin (Eds.) Algebra, Geometry and Mathematical Physics (pp.137-146). Heidelberg: Springer. https://hal.archives-ouvertes.fr/file/index/docid/718938/filename/CinfMulhouse.pdf 

Dubois-Violette, M., & Popov, T. (2013). Young tableaux and homotopy commutative algebras. In V. Dobrev (Ed.) Lie Theory and Its Applications in Physics (pp. 191-201). Tokyo: Springer. https://arxiv.org/pdf/1202.2230.pdf 

Ogievetsky, O., & Popov, T. (2012). Drinfeld-jimbo quantum Lie algebra. In International Journal of Modern Physics: Conference Series, 13, 149-157. https://www.worldscientific.com/doi/pdf/10.1142/S2010194512006812

Loday, J.-L., & Popov, T. (2010). Hopf structures on standard Young tableaux. In Lie Theory and Its Applications in Physics: VIII International Workshop, 1243, 265-275. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.192.6029&rep=rep1&type=pdf 

Ogievetsky, O., & Popov, T. (2007). On the Rime Ansatz. https://arxiv.org/pdf/0712.3953.pdf

Loday, J.-L., & Popov, T. (2007). Parastatistics algebras and super semistandard Young tableaux. In V. Dobrev & H.D. Doebner (Eds.) Lie Theory and its Applications in Physics VII (pp. 423-430). Varna: Heron Press. https://arxiv.org/pdf/0711.3648.pdf

Popov, T. (2005). Automorphisms of regular algebras. In V. Dobrev & H.D. Doebner (Eds.) Lie Theory and Its Applications in Physics (pp. 133-140). Varna: Heron Press. https://arxiv.org/pdf/math/0601264.pdf

Popov, T. (2004). Green ansatz for deformed parastatistics. In B. Dragovich, Z. Raki´c, & B. Sazdovi´c (Eds.) Proceedings of III Summer School in Modern Mathematical Physics (pp. 457-464). 

Popov, T. (2003). Parastatistics algebras and combinatorics. In G Djordjević, L Nešić, & J Wess (Eds.) Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model (pp. 231-240).

Popov, T. (2003). Homogeneous algebras, parastatistics and combinatorics. In J.P Gazeau, R Kerner, J.P Antoine, S Metens, & J.Y Thibon (Eds.) GROUP 24: Physical and Mathematical Aspects of Symmetries: Proceedings of the 24th International Colloquium on Group Theoretical Methods in Physics, Paris, 15-20 July 2002 (pp. 463-467).