Professor
Mathematics and Science Department
BAC 322
+359 73 888 491
Journal Articles
Gateva-Ivanova, T., & Majid, S. (2024). Quadratic algebras and idempotent braided sets [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2409.02939
Gateva-Ivanova, T., & Majid, S. (2023). Quadratic algebras associated to permutation idempotent solutions of the YBE [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2308.11427
Gateva-Ivanova, T. (2023). Segre products and Segre morphisms in a class of Yang–Baxter algebras. Letters in Mathematical Physics, 113. https://doi.org/10.1007/s11005-023-01657-z
Gateva-Ivanova, T. (2022). Algebras defined by Lyndon words and Artin-Schelter regularity. Transactions of the American Mathematical Society, Series B, 9, 648–699. https://doi.org/10.1090/btran/89
Arici, F., Galuppi, F., & Gateva-Ivanova, T. (2022). Veronese and Segre morphisms between non-commutative projective spaces. European Journal of Mathematics, 8, 235-273. https://doi.org/10.1007/s40879-022-00547-3
Gateva-Ivanova, T. (2022). Veronese subalgebras and Veronese morphisms for a class of Yang-Baxter algebras. arXiv preprint. https://arxiv.org/pdf/2204.08850.pdf
Gateva-Ivanova, T. (2021). A combinatorial approach to noninvolutive set-theoretic solutions of the Yang–Baxter equation. Publicacions Matemàtiques, 65(2), 747-808. https://raco.cat/index.php/PublicacionsMatematiques/article/view/390250
Gateva-Ivanova, T. (2018). Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups. Advances in Mathematics, 338, 649-701. https://doi.org/10.1016/j.aim.2018.09.005
Cedó, F., Gateva-Ivanova, T., & Smoktunowicz, A. (2018). Braces and symmetric groups with special conditions. Journal of Pure and Applied Algebra, 222(12), 3877-3890. https://doi.org/10.1016/j.jpaa.2018.02.012
Cedó, F., Gateva-Ivanova, T., & Smoktunowicz, A. (2017). On the Yang–Baxter equation and left nilpotent left braces. Journal of Pure and Applied Algebra, 221(4), 751–756. https://doi.org/10.1016/j.jpaa.2016.07.014
Gateva-Ivanova, T., & Fløystad, G. (2014). Monomial algebras defined by Lyndon words. Journal of Algebra, 403(1), 470-496. https://doi.org/10.1016/j.jalgebra.2014.01.012
Gateva-Ivanova, T., & Cameron, P. (2012). Multipermutation solutions of the Yang-Baxter equation. Communications in Mathematical Physics, 309(3), 583-621. https://doi.org/10.1007/s00220-011-1394-7
Gateva-Ivanova, T. (2012). Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity. Advances in Mathematics, 230(4-6), 2152-2175. https://doi.org/10.1016/j.aim.2012.04.016
Gateva-Ivanova, T. (2011). Garside structures on monoids with quadratic square-free relations. Algebras and Representation Theory, 14(4), 779-802. http://rdcu.be/vp1N
Gateva-Ivanova, T., & Majid, S. (2011). Quantum spaces associated to multipermutation solutions of level two. Algebras and Representation Theory, 14(2), 341-376. http://rdcu.be/vp1K
Gateva-Ivanova, T., & Cameron, P. (2009). Multipermutation solutions of the Yang-Baxter equation. Mathematics: Quantum Algebra [electronically published only], 7, 1-60. http://arxiv.org/PS_cache/arxiv/pdf/0907/0907.4276v1.pdf
Gateva-Ivanova, T., & Majid, S. (2008). Matched pairs approach to set theoretic solutions of the Yang- Baxter equation. Journal of Algebra, 319(4), 1462-1529. http://www.sciencedirect.com/science/article/pii/S0021869307006047
Gateva-Ivanova, T., & Majid, S. (2007). Set-theoretic solutions of the Yang–Baxter equation, graphs and computations. Journal of Symbolic Computation, 42(11-12), 1079-1112. https://doi.org/10.1016/j.jsc.2007.06.007
Gateva-Ivanova, T. (2004). Binomial Skew-polynomial rings, Artin-Schelter regular rings, and binomial solutions of the Yang-Baxter equation. Serdica Mathematical Journal, 30(2-3), 431-470. http://www.math.bas.bg/serdica/2004/2004-431-470.pdf
Gateva-Ivanova, T. (2004). A combinatorial approach to the set-theoretic solutions of the Yang-Baxter equation. Journal of Mathematical Physics, 45(10), 3828-3858. https://doi.org/10.1063/1.1788848
Gateva-Ivanova, T., Jespers, E., & Okninski, J. (2003). Quadratic algebras of skew type and the underlying semigroups, Journal of Algebra, 270(2), 635-659. https://doi.org/10.1016/j.jalgebra.2003.06.005
Gateva-Ivanova, T., & Van den Bergh, M. (1998). Semigroups of I-type. Journal of Algebra, 206(1), 97-112. https://doi.org/10.1006/jabr.1997.7399
Gateva-Ivanova, T. (1996). Skew polynomial rings with binomial relations. Journal of Algebra, 185(3), 710-753. https://doi.org/10.1006/jabr.1996.0348
Gateva-Ivanova, T. (1994). Noetherian properties of skew polynomial rings with binomial relations. Transactions of the American Mathematical Society, 343(1), 203-219. http://www.jstor.org/stable/2154529?origin=crossref
Gateva-Ivanova T. (1991). On the noetherianity of some associative finitely presented algebras. Journal of Algebra, 138(1), 13-35. http://www.sciencedirect.com/science/article/pii/002186939190189F
Gateva-Ivanova, T. (1989). P.I. degree of tensor products of PI-algebras. Journal of Algebra, 123(1), 64-73. http://www.sciencedirect.com/science/article/pii/0021869389900355
Gateva-Ivanova, T., & Latyshev, V. (1988). On recognizable properties of associative algebras. Journal of Symbolic Computation, 6(2-3), 371-388. http://www.sciencedirect.com/science/article/pii/S0747717188800543
Chapters in Monographs
Gateva-Ivanova T. (1991). Noetherian properties and growth of some associative algebras. In T. Mora & C. Traverso (Eds.), Effective methods in algebraic geometry. Progress in Mathematics (Vol. 94, pp. 143-158). Birkhäuser. https://doi.org/10.1007/978-1-4612-0441-1_9
Conference Proceedings
Gateva-Ivanova, T. (2021). The Braided group of a square-free solution of the Yang-Baxter equation and its group algebra. In I. Georgiev, H. Kostadinov & E. Lilkova (Eds.), Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol. 961 (pp 182–197). Springer, Cham.
Gateva-Ivanova, T. (2018). Extensions of braided groups. In Mathematics and Education in Mathematics, Proceedings of the 47th Conference of the Union of Bulgarian Mathematicians (pp.102-108). Borovets, Bulgaria.
Belov, A., & Gateva-Ivanova, T. (2016, November). Radicals of monomial algebras. In Proceedings of First International Tainan-Moscow Algebra Workshop (Tainan 1994) (pp. 159-169). Walter de Gruyter, Berlin–New York. https://books.google.de/books?id=WZdsDwAAQBAJ&lpg=PA159&ots=RHOwTmFXUK&dq=Belov%2C%20gateva-ivanova&lr&pg=PA159#v=onepage&q=Belov,%20gateva-ivanova&f=false
Gateva- Ivanova, T. (2000). Set theoretic solutions of the Yang-Baxter equation. In Mathematics and Education in Mathematics, Proceedings of the 29th Spring Conference of the Union of Bulgarian Mathematicians (pp.107-117). Lovetch, Bulgaria.
Gateva-Ivanova T. (1989). Algorithmic determination of the jacobson radical of monomial algebras. In J.H. Davenport (Ed.), Eurocal '87. EUROCAL 1987. Lecture Notes in Computer Science (Vol. 378, pp. 355-364). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51517-8_139
Gateva-Ivanova T. (1989). Global dimension of associative algebras. In T. Mora (Ed.), AAECC 1988: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science (Vol. 357, pp. 213-229). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-51083-4_61