Skip to Main Content

AUBG Faculty Bibliography: Tarulli, Mirko

Mirko Tarulli

Associate Professor

Mathematics and Science Department

undefined

 

 

 

 

 

 

 

 

 

 

  Tarulli, Mirko

  BAC 319

  +359 73 888 493

  mtarulli@aubg.edu

  https://orcid.org/0000-0001-5397-590X

  6506684131

   GGN-1842-2022

  Google Scholar

Bibliography

Monographs

Tarulli, M., Venkov, G., Megel, Y., Kovalenko, S., & Rudenko, A. (2016). Operations research, calculus of variations and optimal control - Part II. Publishing House of Technical University.

Megel, Y., Kovalenko, S., Rudenko, A., Tarulli, M., & Venkov, G. (2016). Operations research, calculus of variations and optimal control - Part I. Publishing House of Technical University.

Chapters in Monographs

Georgiev, V., & Tarulli, M. (2012). Dispersive properties of Schrödinger operators in the absence of a resonance at zero energy in 3D. In M. Ruzhansky, M. Sugimoto & J. Wirth (Eds.), Evolution equations of hyperbolic and Schrödinger type: Asymptotics, estimates and nonlinearities (1 Ed., Vol. 301, pp. 115–143). Birkhäuser.

Journal Articles

Saker, T., Tarulli, M., & Venkov, G. (2024). On the decay in the energy space of solutions to the damped magnetic radial Schrödinger equation with non-local nonlinearities. Mathematics, 12(19). https://doi.org/10.3390/math12192975

Georgiev, V., Tarulli, M., & Venkov, G. (2024). Local uniqueness of ground states for the generalized Choquard equation. Calculus of Variations and Partial Differential Equations, 63(5), 135. https://doi.org/10.1007/s00526-024-02742-4

Tarulli, M., & Venkov, G. (2024). On a generalized Gagliardo–Nirenberg inequality with radial symmetry and decaying potentials. Mathematics, 12(1). https://doi.org/10.3390/math12010008  

Nikolova E., Tarulli M., & Venkov, G. (2023). Decay in energy space for the solutions of generalized Schrödinger-Hartree equation perturbed by a potential. Proceedings of the Bulgarian Academy of Sciences, 75(11), 1559–1572. https://www.proceedings.bas.bg/index.php/cr/article/view/192/187

Nikolova E., Tarulli M., & Venkov, G. (2022). On the magnetic radial Schrödinger-Hartree equation. International Journal of Applied Mathematics, 35(5), 795-809.

Nikolova E., Tarulli M., & Venkov, G. (2022). A note on the decay in the energy space of the radial solution to the fourth-order NLS on the waveguides Rd x T. International Journal of Applied Mathematics, 35(5), 769-785.

Tarulli M., & Venkov, G. (2022). Decay in energy space for the solution of fourth-order Hartree-Fock equations with general non-local interactions. Journal of Mathematical Analysis and Applications, 516(2). https://doi.org/10.1016/j.jmaa.2022.126533

Tarulli M., & Venkov, G. (2021). Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations. Journal of Evolution Equations, 21, 1149-1178.

Tarulli, M. (2019). H2-scattering for systems of weakly coupled fourth-order NLS equations in low space dimensions. Potential Analysis, 51(2), 291–313.

Kostadinov, B., Tarulli, M., & Venkov, G. (2019). Stability of solitary waves for the generalised Hartree equation. Comptes Rendus de l’Academie Bulgare des Sciences, 72(9), 1177-1186.

Georgiev, V., Tarulli, M., & Venkov, G. (2019). Existence and uniqueness of ground states for p-Choquard model. Nonlinear Analysis, 179, 131-145. https://doi.org/10.1016/j.na.2018.08.015

Georgiev, V., Tarulli, M., & Venkov, G. (2019). Orbital stability of solitary waves for the generalized Choquard model. arXiv preprint arXiv:1908.08106. https://arxiv.org/abs/1908.08106

Tarulli, M., & Venkov, G. (2019). Decay and Scattering in energy space for the solution of weakly coupled Choquard and Hartree-Fock equations. arXiv preprint arXiv:1904.10364. https://arxiv.org/abs/1904.10364    

Tarulli, M. (2018). Well-posedness for nonlinear wave equation with potentials vanishing at infinity. Journal of Fourier Analysis and Applications, 24, 1000–1036.

Tarulli, M. (2017). Well-posedness and scattering for the mass-energy NLS on ℝn × ℳk. Analysis, 37(3), 117-131.

Cuccagna, S., Tarulli, M. (2016). On stabilization of small solutions in the nonlinear Dirac equation with a trapping potential. Journal of Mathematical Analysis and Applications, 436(2), 1332-1368. https://doi.org/10.1016/j.jmaa.2015.12.049

Cassano, B., & Tarulli, M. (2015). H1-scattering for systems of N-defocusing weakly coupled NLS equations in low space dimensions. Journal of Mathematical Analysis and Applications 430(1), 528-548. https://doi.org/10.1016/j.jmaa.2015.05.008

Georgiev, V., & Tarulli, M. (2011). Local energy decay for wave equation in the absence of resonance at zero energy in 3D. arXiv preprint arXiv:1103.3760. https://arxiv.org/abs/1103.3760   

Cuccagna, S., & Tarulli, M. (2009). On asymptotic stability of standing waves of discrete schrödinger equation in Z. SIAM Journal on Mathematical Analysis, 41(3), 861-885.

Cuccagna, S., & Tarulli, M. (2009). On asymptotic stability in energy space of ground states of NLS in 2D. Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 26(4), 1361-1386. https://doi.org/10.1016/j.anihpc.2008.12.001

Tarulli, M., & Wilson, J.M. (2008). On a Calderón-Zygmund commutator-type estimate. Journal of Mathematical Analysis and Applications, 347(2), 621-632. https://doi.org/10.1016/j.jmaa.2008.06.046

Tarulli, M. (2007). Strichartz estimates for the wave equation with magnetic potential. Comptes Rendus de L'Academie Bulgare des Sciences, 60(1), 19-26.

Georgiev, V., Stefanov, A., & Tarulli, M. (2007). Smoothing - Strichartz estimates for the Schrödinger equation with small magnetic potential. Discrete and Continuous Dynamical Systems, 17(4), 771-786.

Tarulli, M., & Wilson, J. M. (2007). On a Calderon-Zygmund commutator-type estimate. arXiv preprint math/0702202. https://arxiv.org/abs/math/0702202

Georgiev, V., & Tarulli, M. (2006). Scale invariant energy smoothing estimates for the Schrödinger equation with small magnetic potential. Asymptotic Analysis, 47(1-2), 107-138.

Tarulli, M. (2004). Resolvent estimates for scalar fields with electromagnetic perturbation. Electronic Journal of Differential Equations, 2004(7), 1-14.

Conference Proceedings

Nikolova, E., Tarulli, M., & Venkov, G. (2023). On the well-posedness for the complex Ginzburg–Landau equation on the product Manifold Rd× T. In A. Slavova (Eds), New Trends in the Applications of Differential Equations in Sciences (NTADES 2022), 412, (pp. 129-140) [Springer Proceedings in Mathematics & Statistics]. Sozopol. https://doi.org/10.1007/978-3-031-21484-4_12

Nikolova E., Tarulli M., & Venkov G. (2022). On the well-posedness in Lorentz spaces for the inhomogeneous heat equation. AIP Proceedings.

Nikolova E., Tarulli M., & Venkov G. (2021). Local and global space-time integrability for the inhomogeneous heat equation. AIP Proceedings.

Nikolova E., Tarulli M., & Venkov G. (2021). Extended Strichartz estimates for the heat equation with a Strichartz type potential. AIP Proceedings.

Nikolova, E., Tarulli, M., & Venkov, G. (2019). On the extended Strichartz estimates for the nonlinear heat equation. In V. Pasheva, N. Popivanov & G. Venkov (Eds.), Proceedings of the 45th international conference on application of mathematics in engineering and economics (AMEE’19), 2172 [AIP Conference Proceedings].  https://doi.org/10.1063/1.5133504

Kostadinov, B., Tarulli, M., & Venkov, G. (2019). Instability of solitary waves for the gene- ralized Klein-Gordon-Hartree equation. In V. Pasheva, N. Popivanov & G. Venkov (Eds.), Proceedings of the 45th international conference on application of mathematics in engineering and economics (AMEE’19), 2172 [AIP Conference Proceedings]. https://doi.org/10.1063/1.5133510 

Nikolova, E., Tarulli, M., & Venkov, G. (2019). On the Cauchy problem for the nonlinear heat equation. In A. Slavova (Ed.), Sixth international conference on new trends in the applications of differential equations in sciences (NTADES’19), 2159 [AIP Conference Proceedings].

Nikolova, E., Tarulli, M., & Venkov, G. (2019). Unconditional well-posedness in the energy space for the Ginzburg-Landau equation. In A. Slavova (Ed.), Sixth international conference on new trends in the applications of differential equations in sciences (NTADES’19), 2159 [AIP Conference Proceedings].

Tarulli, M., & Venkov, G. (2018). Scattering for systems of N weakly coupled NLS equations on Rd × Mk in non-isotropic Sobolev fractional spaces. In V. Pasheva, N. Popivanov & G. Venkov (Eds.), Proceedings of the 44th international conference on application of mathematics in engineering and economics (AMEE’18), 2048 [AIP Conference Proceedings]. https://doi.org/10.1063/1.5082096  

Kostadinov, B., Tarulli, M., & Venkov, G. (2018). Solitary waves for Schrödinger-Choquard equation. In V. Pasheva, N. Popivanov & G. Venkov (Eds.), Proceedings of the 44th international conference on application of mathematics in engineering and economics (AMEE’18), 2048 [AIP Conference Proceedings]. https://doi.org/10.1063/1.5082095

Tarulli, M., & Venkov, G. (2017). A functional inequality associated to a Gagliardo-Nirenberg type quotient. In V. Pasheva, N. Popivanov & G. Venkov (Eds.), Proceedings of the 43rd international conference on application of mathematics in engineering and economics (AMEE’17), 1910 [AIP Conference Proceedings]. https://doi.org/10.1063/1.5013981

Kostadinov, B., Tarulli, M., & Venkov, G. (2017). Ground state solution and optimal Gagliardo-Nirenberg constant for the p-Choquard functional. In V. Pasheva, N. Popivanov & G.  Venkov (Eds.), Proceedings of the 43rd international conference on application of mathematics in engineering and economics (AMEE’17), 1910 [AIP Conference Proceedings]. https://doi.org/10.1063/1.5013980

Tarulli, M., & Venkov, G. (2016). Morawetz and interaction Morawetz identities for systems of N -defocusing weakly coupled NLS equations on Rd × T in low space dimensions. In Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics (AMEE’16), 1789 [AIP Conference Proceedings].

Tarulli, M. (2014). On the well-posedness of perturbed wave equation with nonlinearity vanishing at infinity: Linear theory. In G. Venkov & V. Pasheva, (Eds.), Applications of mathematics in engineering and economics (AMEE'14), 1631 [AIP Conference Proceedings].